Ables Springs Special Utility District TX1290010 2023 Annual Drinking Water Quality Report For the period of January 1 to December 31, 2023 For more information regarding this report contact: Ables Springs SUD (972) 563-9704 Para asistencia en español, favor de llamar al telefono (972) 563-9704. Ables Springs SUD Board Of Directors Meetings are held on the 3rd Wednesday of the month at 7:00pm at 30100 FM 429 Terrell, TX.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

• Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater and gas production, mining, or farming.

· Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

• Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also

come from gas stations, urban storm water runoff, and septic systems.

· Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer, persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Ables Springs SUD & NTMWD Tawakoni Water Treatment Plants

ABLES SPRINGS SUD purchases water from NORTH TEXAS MWD TAWAKONI WTP.

Additional Information on may be obtained at www.ntmwd.com

In the water loss audit submitted to the Texas Water Development Board for the time period of Jan-Dec 2023, our system had an estimated water loss of 6%.

	Definitions: The following tables contain scientific terms and measures, some of which may require explanation.
Avg	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Maximum Contaminant Level or MCL	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant goal or MRDLG	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL	million fibers per liter (a measure of asbestos)
na	not applicable
NTU	nephelometric turbidity units (a measure of turbidity)
pCi/L	picocuries per liter (a measure of radioactivity)
ррЬ	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.
ppt	parts per trillion, or nanograms per liter (ng/L)
ppq	parts per quadrillion, or picograms per liter (pg/L)

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023

addity Data for fo

		Contract International	Coli	form Bacte	ria			
Maximum Contaminant Level Goal		form Maximum ninant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Po: E. Coli Col	l No. of sitive or Fecal liform mples	Violation	Likely Source of Contamination
0	1 positive monthly sample ound no fecal coliform bacteria. Colif		0.00	0		0	NO	Naturally present in the environment.
	Collection	Highest Level	Regulat Range of Levels	ed Contam	inants			
Disinfection By-Products	Date	Detected	Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2023	28.9	11.5-28.90	No goal for the total	60	ppb	NO	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	58	23.9-58.00	No goal for the total	80	ppb	NO	By-product of drinking water disinfection.
Bromate	2023	Levels lower than detect level	0 - 0	5	10	ppb	No	By-product of drinking water ozonation.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2023	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2023	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2023	0.048	0.041 - 0.048	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries erosion of natural deposits.
Beryllium	2023	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries
Cadmium	2023	Levels lower than detect level	0 - 0	5	5	ррb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2023	199	28 - 199	0 - 0	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2023	0.968	0.537 - 0.968	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2023	0.790	0.067 - 0.790	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2023	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2023	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories.
litrate Advisory: Nitrate in drinkin aby syndrome. Nitrate levels ma are provider.								
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2022	4.7	4.7 - 4.7	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2022	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2022	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.

O	10 100	Life Mark	SE LA PORTON	The second		6.68		
Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ррь	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2022	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2023	0.2	0.1 - 0.2	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distributio lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2023	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2023	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2023	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2023	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadiene	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2023	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2023	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables alfalfa, and livestock.
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes and tomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0 - 0	500	500	ppb	No	Herbicide runoff.
Simazine	2023	0.12	0.06 - 0.12	4	4	ppb	No	Herbicide runoff.
Toxaphene	2023	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2023	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2023	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories
Dichloromethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2023	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factorie
Xylenes	2023	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.
				Turbidity				
			Limit (Treatment Tech	nique)		Detected	Violation	Likely Source of Contamination
lighest single measuremen	t		1 NTU		(0.73	No	Soil runoff.
owest monthly percentage	(%) meeting	limit	0.3 NTU			8.0%	No	Soil runoff.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2023	2.72	0.50	4.08	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2023	0.01	0	0.59	0.80	0.80	ppm	Disinfectant.
Chlorite	2023	0.16	0	0.88	1.00	N/A	ppm	Disinfectant.

Total Organic Carbon

- Carlos Contesting		Crypt	osporidium and Giardi	a	
Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2023	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.
Giardia	2023	0.18	0.09 - 0.18	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

ad and Copper enter drinking water mainly fr DDITIONAL HEALTH INFORMATION FOR Li drinking water is primarily from materials and it cannot control the variety of materials used ishing your tap for 30 seconds to 2 minutes bi formation on lead in drinking water, testing m http://www.epa.gov/safewater/lead. Collection Contaminants Chloroform 2023 Bromodichloromethane 2023 Dibromochloromethane 2023 OTE: Bromoform, chloroform, bromodichloro	m corrosion of plumbi EAD: If present, elevat components associate in plumbing componen ofore using water for dr thtods, and steps you of the state of the state elevation of the state methane, and dibromoo ts are included in the D High High	ing materials containing lead ed levels of lead can cause a d with service lines and hon ts. When your water has bee inking or cooking. If you are can take to minimize exposur Unregul ghest Level Detected 33.88 <1.00 17.1 7.74 chloromethane are disinfectif Disinfection By-Products TH- Secondary and Oth ghest Level Detected er than detect level 69.8	and copper. and copper. serious health problems, espines en plumbing. Ables Springs en sitting for several hours, y concerned about lead in you re is available from the Safe lated Contaminants Range of Levels Detected 11.4-33.80 11.4-33.80 3.2-17.10 4.31-7.74 on by-products. There is no it compliance data.	becially for p SUD is resp sou can minine response and minine Drinking W S U U maximum co Dt Regul U S	regnant wome onsible for pro- imize the poter may wish to h /ater Hotline o //ater Hotline	en and young children. Lead oviding high quality drinking water, ntial for lead exposure by have your water tested. r Likely Source of Contamination By-product of drinking water disinfection. By-product of drinking water disinfection. By-
Copper 8/8/2023 CAD AND COPPER RULE: The Lead and Cop ad and Copper enter drinking water mainly fr DDITIONAL HEALTH INFORMATION FOR L drinking water is primarily from materials used shing your tap for 30 seconds to 2 minutes b formation on lead in drinking water, testing m http://www.epa.gov/safewater/lead. Contaminants Collection Date Chloroform 2023 Bromodichloromethane 2023 Dibromochloromethane 2023 Dibromochloromethane 2023 Contaminants Collection Date Chloroform 2023 Bromodichloromethane 2023 Dibromochloromethane 2023 Calcium 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Manganese 2023	1.30 Deper Rule protects public more corrosion of plumble AD: If present, elevat components associate more using water for dr ethods, and steps you of Hig methane, and dibromot ts are included in the D Hig	0.224 ic health by minimizing lead ing materials containing lead ed levels of lead can cause e ed with service lines and hom is. When your water has bei inking or cooking. If you are can take to minimize exposu Unregui ghest Level Detected 33.88 <1.00 17.1 7.74 chloromethane are disinfective Disinfection By-Products TTH Secondary and Oth phest Level Detected er than detect level 69.8	40 and copper levels in drinking and copper. serious health problems, esp ne plumbing. Ables Springs is available from the Safe atted Contaminants Range of Levels Detected 11.4-33.80 <1.00 8.2-17.10 4.31-7.74 on by-products. There is no r it compliance data. ter Constituents No Range of Levels Detected 0 - 0	ppm g water, prin vecially for p SUD is resp SUD is resp SUD is resp SUD is resp SUD is resp U Drinking W S U U M maximum co Dri Regul	NO narily by reduce regnant wome onsible for pro rmize the poly narily wish to h fater Hotline o Inits ppb ppb ppb ppb ated Inits ppm	deposits. Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems. cing water corrosivity. en and young children. Lead oviding high quality drinking water, ntial for lead exposure by nave your water tested. r Likely Source of Contamination By-product of drinking water disinfection. Every of the se chemicals at Likely Source of Contamination Erosion of natural deposits.
AD AND COPPER RULE: The Lead and Cop and and Copper enter drinking water mainly fr DDITIONAL HEALTH INFORMATION FOR L drinking water is primarily from materials and t cannot control the variety of materials used ishing your tap for 30 seconds to 2 minutes b formation on lead in drinking water, testing m http://www.epa.gov/safewater/lead. Collection Date Chloroform 2023 Bromoform 2023 Bromodichloromethane 2023 OTE: Bromoform, chloroform, bromodichloro e entry point to distribution. These contaminar Aluminum 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Manganese 2023 Nickel 2023	per Rule protects public pre rotation of plumbi EAD: If present, elevat components associate fore using water for dr thtods, and steps you of Hit methane, and dibromoi ts are included in the E	ic health by minimizing lead ing materials containing lead ed levels of lead can cause a d with service lines and hon its. When your water has be- inking or cooking. If you are can take to minimize exposu Unregu ghest Level Detected 33.88 <1.00 17.1 7.74 chloromethane are disinfection Disinfection By-Products TTH Secondary and Oth phest Level Detected er than detect level 69.8	and copper levels in drinking and copper. serious health problems, esp ne plumbing. Ables Springs en sitting for several hours, y concerned about lead in you re is available from the Safe lated Contaminants Range of Levels Detected 11.4-33.80 <1.00 8.2-17.10 4.31-7.74 on by-products. There is no its compliance data. ter Constituents No Range of Levels Detected 0 - 0	g water, prin secially for p SUD is resp to u can miniar water, you D Drinking W S U U maximum cc Dt Regul	Inits Ppb	preservatives; corrosion of household plumbing systems. cing water corrosivity. an and young children. Lead oviding high quality drinking water, ntial for lead exposure by have your water tested. r Likely Source of Contamination By-product of drinking water disinfection. By-product of drinking water disinfection. By-pr
Contaminants Date Chloroform 2023 Bromoform 2023 Bromodichloromethane 2023 Dibromochloromethane 2023 OTE: Bromoform, chloroform, bromodichloro entry point to distribution. These contaminant 2023 Contaminants Collection Aluminum 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Nickel 2023	m corrosion of plumbi EAD: If present, elevat components associate in plumbing componen ofore using water for dr thtods, and steps you of the state of the state elevation of the state methane, and dibromoo ts are included in the D High High	ing materials containing lead ed levels of lead can cause a d with service lines and hon ts. When your water has bee inking or cooking. If you are can take to minimize exposur Unregul ghest Level Detected 33.88 <1.00 17.1 7.74 chloromethane are disinfectif Disinfection By-Products TH- Secondary and Oth ghest Level Detected er than detect level 69.8	and copper. serious health problems, esp espice health problems, espice he	becially for p SUD is resp sou can minine response and minine Drinking W S U U maximum co Dt Regul U S	Anits An	en and young children. Lead oviding high quality drinking water, ntial for lead exposure by have your water tested. r Likely Source of Contamination By-product of drinking water disinfection. By-product of drinking water disinfection. By-
Contaminants Date Chloroform 2023 Bromoform 2023 Bromodichloromethane 2023 Dibromochloromethane 2023 OTE: Bromoform, chloroform, bromodichloro entry point to distribution. These contaminant 2023 Contaminants Collection Aluminum 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Nickel 2023	methane, and dibromo Is are included in the D Hig	Best Level Detected 33.88 <1.00	Range of Levels Detected 11.4-33.80 <1.00	U maximum cc Dt Regul	ppb ppb ppb ppb ated Inits opm	By-product of drinking water disinfection. By-product of drinking water disinfection. By-product of drinking water disinfection. By-product of drinking water disinfection. el for these chemicals at Likely Source of Contamination Erosion of natural deposits.
Contaminants Date Chloroform 2023 Bromoform 2023 Bromodichloromethane 2023 Dibromochloromethane 2023 OTE: Bromoform, chloroform, bromodichloro e entry point to distribution. These contaminant Collection Contaminants Collection Aluminum 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Nickel 2023	methane, and dibromo Is are included in the D Hig	Detected 33.88 <1.00 17.1 7.74 bioinfection By-Products TTH Secondary and Oth ghest Level Detected er than detect level 69.8	Detected 11.4-33.80 <1.00	naximum co	ppb ppb ppb ppb ated Inits opm	By-product of drinking water disinfection. By-product of drinking water disinfection. By-product of drinking water disinfection. By-product of drinking water disinfection. el for these chemicals at Likely Source of Contamination Erosion of natural deposits.
Chloroform 2023 Bromoform 2023 Bromodichloromethane 2023 Dibromochloromethane 2023 OTE: Bromoform, chloroform, bromodichloro entry point to distribution. These contaminant Contaminants Collection Aluminum 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Nickel 2023	methane, and dibromou Is are included in the [Hig	33.88 <1.00 17.1 7.74 chloromethane are disinfection bisinfection By-Products TTH Secondary and Oth ghest Level Detected rer than detect level 69.8	11.4-33.80 <1.00	naximum co	ppb ppb ppb ppb ated Inits opm	By-product of drinking water disinfection. By-product of drinking water disinfection. By-product of drinking water disinfection. By-product of drinking water disinfection. el for these chemicals at Likely Source of Contamination Erosion of natural deposits.
Bromodorm 2023 Bromodichloromethane 2023 Dibromochloromethane 2023 OTE: Bromodichloro entry point to distribution. These contaminants Collection Contaminants Collection Aluminum 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Nickel 2023	Its are included in the E	<1.00 17.1 7.74 chloromethane are disinfectio bisinfection By-Products TTH Secondary and Oth ghest Level Detected rear than detect level 69.8	<1.00 8.2-17.10 4.31-7.74 M compliance data. Ter Constituents No Range of Levels Detected 0 - 0	naximum co ot Regul	ppb ppb ppb ontaminant lev ated Inits	By-product of drinking water disinfection. By-product of drinking water disinfection. By-product of drinking water disinfection. el for these chemicals at Likely Source of Contamination Erosion of natural deposits.
Bromodichloromethane 2023 Dibromochloromethane 2023 OTE: Bromoform, chloroform, bromodichloro e entry point to distribution. These contaminant Collection Contaminants Collection Aluminum 2023 Calcium 2023 Iron 2023 Magnesium 2023 Nickel 2023	Its are included in the E	17.1 7.74 chloromethane are disinfectii Disinfection By-Products TTH Secondary and Oth ghest Level Detected wer than detect level 69.8	8.2-17.10 4.31-7.74 on by-products. There is no if the compliance data. Iter Constituents Not Range of Levels Detected 0 - 0	maximum co ot Regul U	ppb ppb ontaminant lev ated Inits opm	By-product of drinking water disinfection. By-product of drinking water disinfection. rel for these chemicals at Likely Source of Contamination Erosion of natural deposits.
Dibromochloromethane 2023 DTE: Bromoform, chloroform, bromodichloro e entry point to distribution. These contaminant Collection Contaminants Collection Aluminum 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Nickel 2023	Its are included in the E	7.74 chloromethane are disinfection disinfection By-Products TTH Secondary and Oth ghest Level Detected ter than detect level 69.8	4.31-7.74 on by-products. There is no r M compliance data. ter Constituents No Range of Levels Detected 0 - 0	maximum co ot Regul U	ppb ontaminant lev ated Inits opm	By-product of drinking water disinfection. el for these chemicals at Likely Source of Contamination Erosion of natural deposits.
OTE: Bromoform, chloroform, bromodichloro e entry point to distribution. These contaminant Contaminants Collection Date Aluminum 2023 Calcium 2023 Chloride 2023 Iron 2023 Magnesium 2023 Manganese 2023 Nickel 2023	Its are included in the E	chloromethane are disinfection Disinfection By-Products TTH Secondary and Oth Detected Per than detect level 69.8	on by-products. There is no r M compliance data. ther Constituents Not Range of Levels Detected 0 - 0	naximum co ot Regul U	ated Inits	Likely Source of Contamination
e entry point to distribution. These contaminant Contaminants Collection Date Aluminum 2023 Calcium 2023 Calcium 2023 Iron 2023 Iron 2023 Magnesium 2023 Magnesium 2023 Manganese 2023 Nickel 2023	Its are included in the E	Disinfection By-Products TTH Secondary and Oth Detected er than detect level 69.8	IM compliance data. In Constituents No Range of Levels Detected 0 - 0	ot Regul U	ated Inits opm	Likely Source of Contamination Erosion of natural deposits.
ContaminantsDateAluminum2023Calcium2023Chloride2023Iron2023Magnesium2023Manganese2023Nickel2023	Hig	phest Level Detected er than detect level 69.8	Range of Levels Detected 0 - 0	U	Inits opm	Erosion of natural deposits.
ContaminantsDateAluminum2023Calcium2023Chloride2023Iron2023Magnesium2023Manganese2023Nickel2023	Hig	phest Level Detected er than detect level 69.8	Range of Levels Detected 0 - 0	U	Inits opm	Erosion of natural deposits.
ContaminantsDateAluminum2023Calcium2023Chloride2023Iron2023Magnesium2023Manganese2023Nickel2023		Detected er than detect level 69.8	Detected 0 - 0	F	opm	Erosion of natural deposits.
Calcium2023Chloride2023Iron2023Magnesium2023Manganese2023Nickel2023	Levels low	69.8				
Chloride2023Iron2023Magnesium2023Manganese2023Nickel2023			26.5 - 69.8	ŗ	nm	
Iron 2023 Magnesium 2023 Manganese 2023 Nickel 2023					-pin	Abundant naturally occurring element.
Magnesium 2023 Manganese 2023 Nickel 2023		107	30 - 107	F	opm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.
Manganese 2023 Nickel 2023	0.516		0.061 - 0.516	F	opm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Nickel 2023	9.77		4.90 - 9.77	F	opm	Abundant naturally occurring element.
		0.158	0.0068 - 0.158	F	opm	Abundant naturally occurring element.
рН 2023		0.0048	0.0047 - 0.0048	F	opm	Erosion of natural deposits.
		9.17	6.39 - 9.17	u	units	Measure of corrosivity of water.
Silver 2023	Levels low	er than detect level	0 - 0	F	opm	Erosion of natural deposits.
Sodium 2023		95.4	26.5 - 95.4	Ł	opm	Erosion of natural deposits; by-product of oil field activity.
Sulfate 2023		171	76.8 - 171	F	opm	Naturally occurring; common industrial by-product; by- product of oil field activity.
Total Alkalinity as CaCO3 2023		139	51 - 139	F	opm	Naturally occurring soluble mineral salts.
Total Dissolved Solids 2023		492	263 - 492	F	opm	Total dissolved mineral constituents in water.
Total Hardness as CaCO3 2023		312	82 - 312	F	opm	Naturally occurring calcium.
Zinc 2023	1	er than detect level	0 - 0	F	opm	Moderately abundant naturally occurring element used in the metal industry.
	Leveis low					

	Violation		
Violation Type	Begin	Violation End	Violation Explanation

			The North Texas MWD Wylle WTP water system PWS ID TX0430044 has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290< Subchapter F. Public water systems are required to collect and submit chemical samples to the TCEQ on a regular basis.
	Jan-23		We failed to monitor and/or report the following constituents: Nitrate
			This/These violation(s) occurred in the monitoring period(s): First Quarter 01/01/2023 - 3/31/2023
			Results of regular monitoring are an indicator of whether or not your drinking water is safe from chemical contamination. We did not complete all monitoring and/or reporting for chemical constituents, and therefore TCEQ cannot be sure of the safety of your drinking water during that time.
NITRATE MONITORING, ROUTINE MAJOR		Jan-23	Mar-23
			Please share this information with all people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.
			If you have questions concerning this matter you may contact NTMWD Water System Manger - Treatment Mr. Gabriel Bowden at (972) 608- 7009
			Posted/Delivered on: 3-28-2024

Ables Springs Special Utility District TX1290010 2023 Annual Drinking Water Quality Report For the period of January 1 to December 31, 2023

For more information regarding this report contact:

Ables Springs SUD (972) 563-9704

Para asistencia en español, favor de llamar al telefono (972) 563-9704.

Ables Springs SUD Board Of Directors Meetings are held on the 3rd Wednesday of the

month at 7:00pm at 30100 FM 429 Terrell, TX.

Sources of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791

Contaminants that may be present in source water include:

• Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater and gas production, mining, or farming,

· Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

• Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also

come from gas stations, urban storm water runoff, and septic systems.

• Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Ables Springs SUD & NTMWD Tawakoni Water Treatment Plants

ABLES SPRINGS SUD purchases water from NORTH TEXAS MWD TAWAKONI WTP.

Additional Information on may be obtained at www.ntmwd.com

In the water loss audit submitted to the Texas Water Development Board for the time period of Jan-Dec 2023, our system had an estimated water loss of 6%.

	Definitions: The following tables contain scientific terms and measures, some of which may require explanation.
Avg	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Maximum Contaminant Level or MCL	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant goal or MRDLG	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL	million fibers per liter (a measure of asbestos)
na	not applicable
NTU	nephelometric turbidity units (a measure of turbidity)
pCi/L	picocuries per liter (a measure of radioactivity)
ppb	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.
ppt	parts per trillion, or nanograms per liter (ng/L)
ppq	parts per quadrillion, or picograms per liter (pg/L)

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Coliform or E. Coli	Positive E. Coli or Fecal	Violation	Likely Source of Contamination
0	1 positive monthly sample	0.00	0	0	NO	Naturally present in the environment.
OTE: Reported monthly test	s found no fecal coliform bacteria. C	Coliforms are bacteria that are	naturally prese	nt in the environment	and are used	as an indicator that other,

potentially harmful bacteria may be present.

Regulated Contaminants

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2023	28.90	11.5-28.90	No goal for the total	60	ppb	NO	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	58.00	23.9-58.00	No goal for the total	80	ppb	NO	By-product of drinking water disinfection.
Bromate	2023	Levels lower than detect level	0 - 0	5	10	ppb	No	By-product of drinking water ozonation.
NOTE: Not all sample results sampling should occur in the								to determine where compliance ming annual average.
Inorganic Contaminants	Date	Detected	Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2023	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2023	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2023	0.063	0.063 - 0.063	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2023	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries
Cadmium	2023	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste hatteries and paints
Chromium	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2023	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2023	0.664	0.664 - 0.664	4	4	ppm	No	Erosion of natural deposits; water additive which promote strong teeth; discharge from fertilizer and aluminum factories
Mercury	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2023	0.379	0.379 - 0.379	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2023	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2023	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue

baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2021	4.8	4.8 - 4.8	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2021	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2021	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

contaminants including pesticides and	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2021	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2021	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2021	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2021	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2021	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2021	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2021	0.1	0.1 - 0.1	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2021	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2021	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2021	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2021	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2021	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2021	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2021	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2021	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2021	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2021	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2021	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2021	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2021	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadien e	2021	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2021	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2021	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2021	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2021	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2021	Levels lower than detect level	0 - 0	500	500	ppb	No	Herbicide runoff.
Simazine	2021	Levels lower than detect level	0 - 0	4	4	ppb	No	Herbicide runoff.
Toxaphene	2021	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2023	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories
1, 1, 2 - Trichloroethane	2023	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.

1, 2 - Dichloroethane	2023	Levels lower than detect level	0-0	0	5	ррь	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2023	Levels lower than detect level	0 - 0	0	5	ppb		Discharge from factories; leaching from gas storage tanks and landfills.

Carbon Tetrachloride	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
		NTM	WD Tawakon	i Water	Trea	atmen	t Plan	s

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2023	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2023	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

Water Quality Data for Year 2023 (Cont.)

Turbidity

ALCONDUCTION OF A	All Property lies	States States	Limit		Level D	Detected	Violation	Likely Source of Contamination
ghest single measurem	ent		1 NTU		0.26		No	Soil runoff.
west monthly percenta	ge (%) meeti	ng limit	0.3 NTU		100%		No	Soil runoff.
TE: Turbidity is a measure	ement of the clo	udiness of the water c	aused by suspended partic	les. We monitor	it because	e it is a good	d indicator of w	vater quality and the effectiveness
our filtration.								
			Maximum Re	sidual Disi	nfectar	nt Level	C. Carlos	
Disinfectant Type	Year	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2023	2.72	0.50	4.08	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2023	0.01	0	0.26	0.80	0.80	ppm	Disinfectant.
	2023	0.31	0	0.88	1.00	N/A	ppm	Disinfectant.

average chlorine disinfection residual level of between 0.5 ppm and 4 ppm.

Total Organic Carbon

Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set.

Cryptosporidium and Giardia

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2023	Levels lower than detect level	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.
Giardia	2023	Levels lower than detect level	0 - 0	(Oo) Cysts/L	Human and animal recai waste. Naturally present in the

NOTE: Only source water was evaluated for cryptosporidium and giardia. Levels shown are not for drinking water.

NTMWD Tawakoni Water Treatment Plants

		a second and the	Le	ad and Coppe	r	Contract Sec	
Lead and Copper	Date	Action	90th Percentile	# Sites	Units	violation	Likely Source of Contamination
Lead	8/8/2023	15	5	40	ppb	NO	Erosion of natural deposits; leaching from wood
Copper	8/8/2023	1.3	0.224	40	ppm	NO	Corrosion of household plumbing systems; erosion of

Lead and Copper enter drinking water mainly from corrosion of plumbing materials containing lead and copper. ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Ables Springs SUD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available. from the Safe Drinking Water Hotline or a thir information or lead in drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Contaminants	Collection	Highest Level	Range of Levels	Units	Likely Source or Contamination
Chloroform	2023	33.8	11.4-33.80	ppb	By-product of drinking water disinfection.
Bromoform	2023	<1.00	<1.00	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2023	17.1	8.2-17.10	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2023	7.74	4.31-7.74	ppb	By-product of drinking water disinfection.

the entry point to distribution. These contaminants are included in the Disinfection By-Products TTHM compliance data.

Secondary and Other Constituents Not Regulated
--

Contaminants	Collection	Highest Level	Range of Levels	Units	Likely Source of Contamination
Aluminum	2023	0.025	0.025 - 0.025	ppm	Erosion of natural deposits.
Calcium	2023	45.2	33.8 - 45.2	ppm	Abundant naturally occurring element.
Chloride	2023	21.9	14.7 - 21.9	ppm	Abundant naturally occurring element; used in water
Iron	2023	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery
Magnesium	2023	2.89	2.89 - 2.89	ppm	Abundant naturally occurring element.
Manganese	2023	0.0041	0.0041 - 0.0041	ppm	Abundant naturally occurring element.
Nickel	2023	0.0031	0.0031 - 0.0031	ppm	Erosion of natural deposits.
pH	2023	8.3	7.4 - 8.3	units	Measure of corrosivity of water.
Silver	2023	Levels lower than detect level	0-0	ppm	Erosion of natural deposits.
Sodium	2023	20.6	16.2 - 20.6	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2023	75.0	47.5 - 75.0	ppm	Naturally occurring; common industrial by-product; by-
Total Alkalinity as CaCO3	2023	79	40 - 79	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2023	212	136 - 212	ppm	Total dissolved mineral constituents in water.
otal Hardness as CaCO3	2023	128	79 - 128	ppm	Naturally occurring calcium.
Zinc	2023	Levels lower than detect level	0-0	ppm	Moderately abundant naturally occurring element used in

iolation Type	violation	Violation End	Violation Explanation	
anon .jpo		the second second	Totation Explanation	